IMMUNOSTIMULATING PROPERTIES OF THE OCTAPEPTIDE CHOLECYSTOKININ AND ITS FRAGMENTS

I. V. Molchanova, G. A. Belokrylov, O. Ya. Popova, and V. N. Kalikhevich

UDC 615.275.4:577.175.85]-07

KEY WORDS: octapeptide cholecystokinin; immune response; phagocytic activity of neutrophils

In previous investigations [3, 6] the thymus-dependent immune response was shown to be stimulated by pentagastrin (PG), which had no action on the level of the thymus-independent response. While stimulating the immune response pentagastrin did not affect phagocytic activity of neutrophils [3].

No information on the action of the octapeptide cholecystokinin (CK-8), which shares a common C-terminal tetrapeptide with PG, on the above-mentioned parameters could be found in the accessible literature. It is not known whether any correlation exists between the hormonal and immunomodulating activity of CK-8.

The aim of this investigation was to study the action of various forms of CK-8 and its fragments on immunologic parameters of intact and thymectomized mice.

EXPERIMENTAL METHOD

Experiments in vivo were carried out on 313 intact, 59 thymectomized, and 20 mock-thymectomized male CBA mice weighing 14-16 g. The thymectomized and mock-thymectomized animals were used in the experiments 1-1.5 months after the operation. Thymectomy was performed surgically under superficial ether anesthesia [2]. In the mock operation all steps were carried out except removal of the thymus.

The following substances were tested: PG (Boc- β -Ala-Trp-Met-Asp-Phe-NH₂, from "Sanitas," Kaunas), the sulfated form of CK-8 [Asp-Tyr(SO₃H)-Met-Gly-Trp-Met-Asp-Phe-NH₂, obtained from the Cardiologic Scientific Center, Russian Academy of Medical Sciences, Moscow, the nonsulfated form of CK-8 (Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH₂), and fragments of the nonsulfated form of CK-8 (Asp-Tyr-Met-Gly; Trp-Met-Asp-Phe-NH₂; from St. Petersburg University).

The preparations were made up in pyrogen-free physiological saline ("Polfa," Poland) subcutaneously for 5 days within the dose range of 10^{-9} - 10^{-14} M per mouse per day. The control animals were given pyrogen-free physiological saline alone by the same schedule, The animals were then immunized intravenously with sheep's red blood cells ($2 \cdot 10^6$ SRBC) or with 0.001 μ g of Vi-antigen. On the 4th day after immunization the number of IgM antibody-forming cells (AFC) was counted in the spleen of each mice and the result expressed per 10^6 karyocytes [7].

The effect of the peptides on medullary precursor T-cells was estimated on the basis of the appearance of Thy-I-antigen on the cells after incubation with the preparations at 37°C for 90 min. To assess interaction between the preparations and mature splenic T cells the phenomenon of screening (reducing the sensitivity of peptide-treated Thy-I-cells to the action of anti-Thy-I-antibodies was used [4]). In both cases the number of Thy-I-cells was determined with the aid of antibone-marrow serum [1] in the complement-dependent cytotoxic test [1, 4].

Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg (Presented by Academician of the Russian Academy of Medical Sciences A. D. Ado.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 114, No. 12, pp. 631-633, December, 1992. Original article submitted November 13, 1991.

TABLE 1. Effect of Octapeptide Cholecystokinin and Its Fragments on Immune Response to SRBC (M \pm m, n = 10)

Parameter of immune response	[reparation	Dose of preparation, M/mouse/day					Injection of	
		10-9	10-10	10-11	10-12	10-13	10-14	pyrogen-free physiologycal saline (control)
Number of IgM-AFC	Sulated CK-8	$12.9 \pm 0.9*$	$14.7 \pm 1.1*$	$18.4 \pm 2.7*$	$15.1 \pm 1.7^*$	$11.9 \pm 0.9*$	8.6 ± 0.8	8.5 ± 0.7
per 10 ⁶ splenic	Nonsulfated CK-8	$13.3 \pm 1.4*$	15,5±2,0*	24.5 ± 5.0 *	$16.7 \pm 2.3*$	$11.3 \pm 1.0*$	9.1 ± 1.1	8.3 ± 0.6
karyo- cytes	C-terminal tetra-	$15.8 \pm 1.6*$	13.9 ± 1.5 *	$21.7 \pm 3.7*$	$14.3 \pm 1.7*$	9.9 ± 0.9	_	$8,4 \pm 0,6$
	peptide N-terminal tetra- peptide	12,3±0,8*	10.1 ± 1.2	9,8±1,0	9.6±1,1	9.0±1.5	~~~	8.7 ± 0.7

Legend. *p < 0.05: Significant difference from control.

TABLE 2. Effect of Octapeptide Cholecystokinin and Its Fragments on Number of Splenic Thy-I⁺-Cells and on Immune Response of Thymectomized Mice to SRBC ($M \pm m$)

Mice	Preparation	Number of Thy-I*-cells in spleen (cytotoxic- ity index of anti-bone- marrow serum, %)	Number of IgM-AFC/10 ⁶ splenic karyocytes
Undergoing mock operation	Pyrogen-free physiological saline Pyrogen-free physiological saline	± 0.7	14,0±0,8 (20) 6,4±0,8 (20)
Thymectomized	Sulfated CK-8 Nonsulfated CK-8 C-terminal tetrapeptide N-terminal tetrapeptide	$11.0\pm1.8*$ $10.6\pm1.7*$ $10.8\pm1.8*$ 3.2 ± 1.1	12,1±1,4 (10)* 11,7±1,3 (9)* 12,1±1,1 (10)* 7,9±0,7 (10)

Legend. Asterisk indicates significant difference compared with corresponding parameter for thymectomized mice receiving pyrogen-free physiological saline (p < 0.01). Number of animals given in parentheses.

To assess the effect of the peptides on phagocytic activity of neutrophils peritoneal exudate cells were used; the cells were obtained 2.5 h after injection of sterile 10% peptone solution. The object of phagocytosis was a 24-h culture of *Staphylococcus aureus* strain 9198. The phagocytic number and phagocytic index were determined [5]. The reference preparation used was 0.005% lipopolysaccharide (prodigiosan).

EXPERIMENTAL RESULTS

As Table 1 shows, the sulfated and nonsulfated forms of CK-8 do not differ in their ability to stimulate the thymus-dependent immune response The C-terminal tetrapeptide of the nonsulfated form of CK-8 within the dose range 10^{-9} - 10^{-12} M increases the number of IgM-AFC compared with the control by 1.7-2.5 times in the same way as both forms of CK-8. The N-terminal tetrapeptide stimulates IgM-AFC production only in a dose of 10^{-9} M, and only by 1.4 times.

The above-mentioned peptides, tested in a dose of 10^{-11} mole/mouse, did not act on the immune response to Vi-antigen: the number of IgM-AFC varied between limits of 10.0 ± 0.6 and 11.6 ± 1.4 compared with 13.4 ± 3.0 in the control (10 animals were tested in each group).

Injection of CK-8 into thymectomized mice in a dose of 10^{-9} M increased the number of Thy-I⁺-cells and restored the level of the immune response to SRBC to the level found in animals undergoing the mock operation. The C-terminal tetrapeptide in the same dose also had a significant (p < 0.01) effect on the level of immunity in thymectomized mice. The N-terminal tetrapeptide CK-8 did not exhibit any activity (Table 2).

TABLE 3. Effect of Octapeptide Cholecystokinin and Its Fragments on Phagocytic Activity of Peritoneal Neutrophils in Vitro $(M \pm m)$

Duonountina	Phagocytosis of staphylccocci			
Preparation	phagocytic index	phagocytic number		
Hanks' solution LPS Sulfated	$25,5\pm1,2$ $41,2\pm1,7*$	1.7 ± 0.09 $2.0 \pm 0.04*$		
CK-8	26.3 ± 1.5	1.70 ± 0.07		
Nonsulfated CK-8	$23,5\pm2,1$	$1,64 \pm 0.06$		
C-terminal tetra peptide CK-8	$26,4\pm2.0$	$1,90\pm0,1$		
N-terminal tetra- peptide CK-8	$26,1 \pm 1,2$	$1,90 \pm 0,09$		

Legend. Peptides tested in a concentration of $1.4 \cdot 10^{-11}$ mole/ml. Each number is result of counting at least 900-1000 neutrophils. Asterisk indicates significant difference compared with corresponding parameters obtained on treatment of cells in vitro with Hanks' solution (p < 0.05).

Treatment of bone marrow cells in vitro with the test peptides $(10^{-9} \text{ mole/ml})$ likewise did not give a consistent result: CK-8 and its C-terminal fragment increased the number of Thy-I⁺-cells from 0% in the control to 6.3 ± 1.3 and $4.3 \pm 1.1\%$ respectively. The N-terminal tetrapeptide caused virtually no change in the number of Thy-I⁺-cells in the bone marrow $(1.3 \pm 0.8 \text{ compared with } 0\%$ in the control). Exposure of the above-mentioned peptides in vitro with splenocytes did not affect the content of Thy-I⁺-cells in this population: during treatment with the preparations the number of Thy-I⁺-cells varied between limits of 30.6 ± 2.7 and $34.1 \pm 2.3\%$ compared with $32.0 \pm 3.3\%$ in the control (not shown in Table 2).

CK-8 and its fragments did not affect the phagocytic activity of the neutrophils (Table 3).

The results show that CK-8, like PG [3, 6], stimulates the thymus-dependent, but does not affect the thymus-independent response or phagocytic activity of the neutrophils. Stimulation of the thymus-dependent immune response by CK-8, in the absence of any effect on the thymus-independent response, is evidence of its connection with the function of T-, but not of B-cells. Induction of Thy-I-antigen on precursor T cells, coupled with inability to interact with mature T lymphocytes, by CK-8 shows that the immunostimulating activity of CK-8 is based on its effect on the immature T-cell population. The virtual absence of activity of the N-terminal tetrapeptide is evidence that the immunostimulating activity of CK-8 is mainly associated with the function of the C-terminal tetrapeptide, which is identical to that of the tetrapeptide pentagastrin. The immunostimulating action of CK-8 is unconnected with its hormonal activity.

REFERENCES

- 1. G. A. Belikrylov, Zh. Mikrobiol., No. 4, 23 (1976).
- 2. G. A. Belokrylov, Zh. Mikrobiol., No. 9, 55 (1978).
- 3. G. A. Belokrylov and B. V. Popov, Immunologiya, No. 1, 30 (1985).
- 4. G. A. Belokrylov. I. V. Molchanova, and O. Ya. Popova, Byull. Éksp. Biol. Med., No. 11, 584 (1989).
- 5. V. V. Men'shikov, Laboratory Methods of Investigation in Clinical Medicine [in Russian], Moscow (1987), p. 310.
- 6. I. V. Molchanova and G. A. Belokrylov, Byull. Éksp. Biol. Med., No. 7, 71 (1987).
- 7. N. K. Jerne and A. A. Nordin, Science, **140**, 405 (1963).